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bstract

Analysis of exhaled air leads to the development of fast accurate and non-invasive diagnostics. A comprehensive analysis of the entire range
f volatile organic compounds (VOCs) in exhaled air samples will enable the identification of VOCs unique for certain patient groups. This
tudy demonstrates proof of principle of our developed method tested on a smoking/non-smoking study population. Thermal desorption and gas
hromatography coupled to time-of-flight mass spectrometry were used to analyse exhaled air samples. The VOC profiles obtained from each
ndividual were combined into one final database based on similarity of mass spectra and retention indexes (RI), which offers the possibility
or a reliable selection of compounds of interest. As proof of principle we correctly classified all subjects from population of smoking (N = 11)

nd non-smoking (N = 11) based on the VOC profiles available in their exhaled air. Support vector machine (SVM) analysis identified 4 VOCs as
iomarkers of recent exposure to cigarette smoke: 2,5-dimethyl hexane, dodecane, 2,5-dimethylfuran and 2-methylfuran. This approach contributes
o future development of fast, accurate and non-invasive diagnostics of inflammatory diseases including pulmonary diseases.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

Medical diagnostics and monitoring devices are developing
t a fast pace greatly improving public health. Non-invasive
nalytic methods based on the presence of hundreds of volatile
rganic compounds (VOCs) in exhaled air could further expand

he use of diagnostics. Exhaled air is easily obtained from
atients which facilitates repeated sampling of not only the same
atient but also larger populations of patients at a lower cost.

Abbreviations: VOC, volatile organic compounds; RI, retention index;
VM, support vector machines; ROS, reactive oxygen species; GC–TOF–MS,
as chromatograph–time-of-flight–mass spectrometer; RT, retention time; MF,
atch factor.
∗ Corresponding author.

E-mail address: F.vanSchooten@GRAT.unimaas.nl (F.J. Van Schooten).
1 Present address: Department of Respiratory Medicine, Leiden University
edical Center, Leiden, The Netherlands.

c
h
t
w
p
a
d
w
b

P
h

570-0232/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.jchromb.2007.11.008
any hundreds of VOCs are present in human breath and the
pinion is rising that these compounds contain valuable infor-
ation on an individual’s disease status [1]. The presence of

ome of these VOCs in human breath is thought to be due to
egradation of polyunsaturated fatty acids by oxidative stress.
his process called lipid peroxidation is a chain reaction pro-
ess in which reactive oxygen species (ROS) remove an allylic
ydrogen atom from lipid membrane structures. This gives rise
o a conjugated radical that is peroxidized by oxygen and this
ay prolongs the chain reaction. Among the final stable reaction
roducts of this process are saturated hydrocarbons like ethane
nd pentane. These hydrocarbons enter the blood stream and
ue to their low solubility in blood they are excreted into breath
ithin minutes after formation. Therefore, they could potentially

e used to monitor the process of oxidative stress in tissues [2].

One of the first exhaled air related studies was performed by
auling et al. [3] who identified over 200 compounds present in
uman exhaled air. Some of these compounds have been associ-
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ted with different pathological conditions. For instance ethane
nd pentane levels have been linked to oxidative stress and lipid
eroxidation [4] and a decrease of exhaled isoprene levels corre-
ated with exacerbations of cystic fibrosis [5]. In 1985, Gordon et
l. identified alkanes and monomethylated alkanes in exhaled air
f lung cancer patients [6], stating the use of the identified com-
ounds as possible biomarkers. In 1999, Phillips et al. selected
2 VOCs to classify subjects with and without lung cancer [7],
nd in 2003 modified the VOC pattern by reducing their num-
er to nine [8]. More recently in 2007 Phillips et al. concluded
hat volatile biomarkers in breath were sensitive and specific for
ulmonary tuberculosis [9]. In 2006 Barker et al. proved the fea-
ibility of chemical breath analysis for VOCs as they studied 12
olatile compounds in exhaled air in relation to cystic fibrosis.
nly one component demonstrated to be significantly different

n CF patients compared to healthy subjects [10]. We devel-
ped a more accurate approach of investigating the full range of
OCs in exhaled air and obtained proof of principle by correctly
lassifying human breath of smokers and non-smokers.

. Experimental

.1. Study subjects

A total of 22 subjects, 11 smokers and 11 non-smokers free
rom chronic lung disease or respiratory tract infection, as con-
rmed by medical history, were included in this study (Table 1).
o restrictions were applied regarding drugs, alcohol or diet.
ubjects were all sampled at one centrally ventilated room at

he university. Participation to this study was voluntary. The
uthors are aware of the small group size, but this study is setup
o provide analytical proof of principle of the methodology pre-
ented here and will in the future be used on very large subject
roups.

.2. Sample collection and analysis

Exhaled air was collected by exhaling into inert Tedlar bags
5 L). Subjects were asked to inhale, hold their breath for 5 s and
ubsequently fully exhale into the Tedlar bag. All Tedlar bags
ere washed twice with high-grade nitrogen as described by the
anufacturer before usage to make sure all contaminants were

liminated. The content of the Tedlar bag was transported under
tandardized conditions onto desorption tubes; stainless steel
wo-bed sorption tubes, filled with carbograph 1TD/Carbopack
(Markes International, Llantrisant, Wales, UK). These
esorption tubes were placed inside the thermal desorption unit
Marks Unity desorption unit, Marks International Limited,
lantrisant, Wales, UK) and quickly heated to 270 ◦C in order

able 1
tudy subject characteristics

Smoking (n = 11) Non-smoking (n = 11)

ge (years) 54 ± 13 47 ± 11
ackyears 26 ± 19 –
ex (m/f) 4/7 6/5
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2
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(
i
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o release all VOCs and transport the released VOCs onto the
C-capillary. The used desorption unit was highly suitable for

epeated, quantitative and reproducible measurements. Ten per-
ent of the sample was injected into the GC, the remaining 90%
ransported to another adsorption tube for storage and may be
sed for later reanalysis. Just before the sample enters the GC the
ample is trapped by a cold trap at 5 ◦C in order to concentrate the
ample. Next VOCs were separated by capillary gas chromatog-
aphy (column: RTX-5ms, 30 m × 0.25 mm 5% diphenyl, 95%
imethylsiloxane, film thickness 1 �m, Thermo Electron Trace
C Ultra, Thermo Electron Corporation, Waltham, USA). The

emperature of the gas chromatograph was programmed as fol-
ows: 40 ◦C during 5 min, then raised with 10 ◦C/min until a final
aximum temperature 270 ◦C in the final step this temperature
as maintained for 5 min. Time-of-flight mass spectrometry

TOF-MS) (Thermo Electron Tempus Plus time-of-flight mass
pectrometer, Thermo Electron Corporation, Waltham, USA)
as used to detect and identify components available in the

amples. Electron ionization mode was set at 70 eV and the mass
ange m/z 35-350 was measured. Sample frequency of the mass
pectrometer was set to 5 Hz and analysis run time to 33 min.

.3. Data-acquisition and data mining

Analysis of the data output files from the GC–TOF–MS was
erformed in successive steps as described below.

.3.1. Peak detection and corrections
Automated peak detection and baseline correction were per-

ormed on the chromatographic raw GC/MS output data files.
aseline correction adjusts the variable background by the fol-

owing steps: first the background is estimated within multiple
hifted windows of width 200 m/z, next the varying baseline is
egressed to the window points using a spline approximation,
nd finally the background of the input signal is adjusted. Peak
etection consisted of first smoothing the signal. After this step
eak locations were assigned. Finally peaks not satisfying spe-
ific criteria, like full peak width at half height and maximum
ase width were eliminated.

The raw GC/MS files contain mass spectra at every MS-scan
erformed (sample frequency of 5 Hz). The resulting output was
aved to a file containing detected peak areas and respective scan
umbers. To combine mass spectra and areas belonging to the
etected peaks the raw GC/MS files and the peak detection out-
ut files were merged through a combination of scan numbers.
his resulted in a file containing four columns: scan numbers,

etention times (RT), peak areas and mass spectra belonging to
he detected peaks.

.3.2. Normalization of retention time within a sample run
nd between subjects’ chromatograms

Normalization of retention times (RT) to retention indices
RI) is necessary to reduce the instrumental variation by adjust-

ng the retention times within each sample run. This was
chieved by normalizing RT to the toluene retention time.

Next the data were corrected for chromatographic drifting
y determining retention indices of 13 widely available com-
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ounds (acetone, 1-propanol, benzene, toluene, furfural, xylene,
tyrene, heptanal, phenol, d-limonene, decanal, diethylphtalate,
iphenylsulfide) in each chromatogram. RI times of these com-
ounds were used in applying corrections in order to line-up the
I indices of all the sample files against one reference sample
le. Polynomial functions and interpolation was used to obtain

he best fit and correct all RT entries.

.3.3. Matching peaks based on similarity of mass spectra
nd retention indices

Subsequently all the corrected files – one for each exhaled air
ample – were combined into one large database file by lining up
ll calculated peak areas of the according compounds based on
I window settings and similarity match factors (MFs) between
ass spectra. The MFs between mass spectra were calculated

sing the best performing routine according to Stein and Scott
11]; the dot-product function that measures the cosine of the
ngle between spectra were represented as vectors.

In order to combine the output files of all individuals into one
orking file suited for statistical analysis, one file was chosen as

eference file based on the overall quality of the measurement.
ext a second output file was selected. Compounds from this

econd file were to be combined with the complementary com-
ounds from the reference file. Combination of these compounds
as based on mass spectra similarity with use of the MF-values

nd the potentially complementary compounds needed to be
ithin a certain RI-range. If no good fit was found the peak was

dded to the reference file as a new entry. This data combination
outine was repeated for every file to be included. Finally the
esulting dataset was checked for RI inconsistencies and com-
ounds demonstrating these RI-inconsistencies were removed
f necessary. This RI-inconsistencies-check is based on the fact
hat if the same instrumental procedure is used for the analysis of
ifferent samples the RI-order of the detected compounds must
e the same.

.3.4. Quantification of peak areas
After all the corresponding peak areas of the complementary

ompounds were combined into one large dataset, normalization
f the peak area data was performed in order to be able to com-
are the different peak areas from different samples. This was
ecessary because the exhaled air samples contained different
nknown absolute volumes of exhaled air, which makes com-
arison of amounts of compounds impossible. Another reason
or normalization is to correct for fluctuations in the response of
he mass spectrometer.

Different types of global normalization have been evaluated.
he most promising rescaling factor used in this study is based
n the cumulative area under the detected peaks and imple-
ented into the final database file. Since all chromatograms

isplay rather similar profiles this method of normalization is
ost robust. Another benefit regarding this area scaling factor

s that it does account for the baseline noise present in the raw

hromatographic signal.

A measure to rule out most of the noise resulted in discarding
eaks with RI < 0.15 and RI > 2.8. The deleted noise was mostly
ue to a high degree of column bleeding after RI > 2.8. Also
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b
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he very light compounds that elute from the column before
I < 0.15 usually contain noisy mass spectra in our setup.

.3.5. Classification model
To determine which compounds added to the database were

f interest with regard to the classification of smoking and non-
moking subjects, we used support vector machines (SVM).
everal experiments have been performed with different clas-
ifiers like random forest, discriminant analysis and principal
omponent analysis. These experiments demonstrated SVM to
utperform all others regarding compound selection. SVM was
ble to select those compounds that provided the best perfor-
ance as implemented into a classifier. SVM demonstrate the

bility to construct predictive models with large generalization
ower even in the case of large dimensionality of the data or
hen the number of observations available for training is low.
VM always seeks a globally optimized solution and avoid over-
tting. This implies a large number of features (i.e. compounds)
re allowed. This encouraged us to implement this subset selec-
ion algorithm into this study. This algorithm will select the

ost optimal subset of compounds able to correctly classify
ur dataset. A variety of subset selection methods was tested,
ike gain-ratio attribute evaluator. The best subset of compounds
as selected using the attribute selection option implemented

n Weka [12]: a collection of machine learning algorithms for
ata mining tasks. Attributes (compounds) were selected using
n SVM attribute evaluator. The attribute evaluator we used
valuated the worth of a subset of attributes by considering
he individual predictive ability of each feature along with the
edundancy between them. Preferably features will be selected
howing high correlations within the class and low intercorrela-
ion. Next the selected attributes were analyzed and ranked with
se of SVM using recursive feature selection and removing one
ttribute at a time. This way attributes were selected using the
eight magnitude as ranking criterion. After every run the least

fficient attribute was removed. All resulting subsets were ana-
yzed for classification performance with use of support vector
lassifiers based on John Platt’s sequential minimal optimization
lgorithm and the random forest classification algorithm [13].

. Results

.1. Reproducibility and variability

To validate the newly developed method to extract the dis-
riminating compounds, the instrumental reproducibility and
nter- and intra-individual variability were tested as well dif-
erences in exhalation patterns.

.1.1. Instrumental reproducibility
Instrumental reproducibility was determined by analyzing

dentical exhaled air samples that were obtained by emptying
filled bag over a y-shaped connector onto two absorption
ubes. The two absorption tubes were subsequently analyzed
y GC–TOF–MS. This experiment was repeated six times.
he instrumental reproducibility was demonstrated by compar-

ng the two complementary chromatograms as demonstrated in
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ig. 1. Example of two chromatograms demonstrating instrumental repro-
ucibility. The measured samples contained identical exhaled air samples. Visual
nspection confirms high degree of similarity.

ig. 1. Already from visual inspection of the two chromatograms
t can be concluded that the two chromatograms are highly simi-
ar, confirming a high degree of instrumental reproducibility. The
uantification of the similarity was done by means of calculation
f a distance measure (dot product rule) and is presented in the
oxplot of Fig. 4. This distance measure is based on the similarity
f the entire raw chromatogram. Distance measure calculation
f all complementary files resulted in a distance measure rang-
ng from 0.96 to 0.99. A value of ‘1’ denotes identical samples,
he lower the value the lesser the degree of similarity.

.1.2. Inter- and intra-individual variability in VOC profiles
Intra-individual and inter-individual variability were also

apped. Intra-individual variability was examined by repeated
ampling of exhaled air from 10 non-smoking subjects for 5 con-
ecutive days and comparing the results per subject from day to
ay. Inter-individual variability was examined by sampling 10
on-smoking subjects and comparing the data from subject to
ubject. Examples of the resulting chromatograms are shown. In
ig. 2a one subject sampled at 2 consecutive days is presented
nd it can be seen that the two chromatograms show a high
egree of similarity. Fig. 2b shows chromatograms from two
ifferent subjects sampled in the same room at the same time.
hown chromatograms demonstrate that the degree of similarity

s less as compared to the chromatograms of Fig. 2a.
Again the similarity between several chromatograms was

uantified using a distance measure as previously mentioned.
he results regarding inter-individual and intra-individual vari-
bility are shown in Fig. 4. This figure shows boxplots
epresenting (a) instrumental reproducibility match factors, (b)
xhalation flow rate depended match factors (c) intra-individual
ariability match factors and (d) inter-individual variability
atch factors. As expected it can be seen from this figure that
he intra-individual variability ranging from 0.80 to 0.99 is far
maller than the inter-individual variability ranging from 0.16
o 0.98; this is consistent with previously performed studies
14,15].

o
r

1

ig. 2. Examples of representative chromatograms from (a) a subject sampled at
consecutive days to examine intra-individual variability and (b) two different

ubjects sampled at the same time to examine inter-individual variability.

.1.3. Exhalation characteristics and its impact on VOC
rofiles

In order to determine whether standardization of the sam-
ling method of the subjects is necessary, an experiment was
erformed to explore the effect of different exhalation patterns
n VOC profiles. To determine whether differences in exhalation
ir sampling of subjects was a variable in our newly developed
ethodology 5 non-smoking subjects inflated 2 Tedlar bags as

ollows: one bag was inflated by superficial exhalation and the
ther one was inflated after deep inspiration, a 5 s breath hold and
ubsequent total exhalation into the sample bag as suggested by
arker et al. [10]. This procedure was repeated five times with
pproximately 90 min intervals in the same centrally ventilated
oom. In Fig. 3 the resulting chromatograms are shown and as
udged already from visual inspection it can be concluded that
hese complementary chromatograms demonstrate a high degree

f similarity suggesting that superficial and deep exhalation are
esulting in similar VOC profiles.

Mann–Whitney testing showed that only 58 out of the total of
201 overall detected compounds proved to be statistically dif-
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ig. 3. Examples of representative chromatograms from a subject inflating a
ag superficially (upper graph) and deeply (lower graph).

erent (p ≤ 0.05) for the two different exhalation methods. After
orrecting for multiple testing by applying Bonferroni correc-
ion for the alpha-value no compound proved to be significantly
ffected by the exhalation characteristics. Again quantification
f the similarity was done by means of calculation of a distance
easure and is presented in the boxplot of Fig. 4b. As can be

een the degree of similarity is comparable to the intra-individual
imilarity, proving difference in exhalation patterns did not lead
o significant difference in VOC profiles within an individual.

.1.4. Validation of methodology on exhaled air from
mokers and non-smokers

To validate the methodology we analyzed the exhaled air from

1 smoking and 11 non-smoking subjects. The subjects exhaled
mean of 381 identified different VOCs. All 22 subjects were

ombined into one large database. In order to correctly combine
he peaks from different subjects an MF-threshold value of 0.85

r
t
A
t

ig. 4. Boxplots of match factors that are based on similarity between raw chromatog
xhalation flow rate depended match factors, (c) intra-individual variability match f
nstrumental reproducibility (a) is by far the smallest, and as expected the inter-indivi
atogr. B  861 (2008) 101–107 105

nd an RI-window value of 0.045 were used. This resulted in a
atabase of 22 subjects and 3211 compounds, 467 compounds
ere present in at least 5 of the 22 subjects.
Compounds that were detected in only 2 of the subjects or

ess were discarded since these compounds do not exert any dis-
riminatory power due to their low occurrence rate and might
ntroduce noise if implemented into the classification model.
his value of at least 3 times availability has been introduced
y trial and error testing of different threshold values and from
imilar experiments as mentioned in literature [16]. Applying
his threshold criterion resulted in a database consisting of 1095
omponents. The selection of peaks that discriminate smokers
rom non-smokers as described in Section 2.3.4 was based on
his final database. The most optimal classification model was
ased on a support vector classifier using just 4 VOCs. This
odel classifies all subjects correctly regarding their smoking

ehavior as tested with a 10 times cross validation. Other clas-
ification models like random forest, random tree, multilayer
erceptrons and Bayesian classifier were also used but the vari-
us classifiers tested did not yield improved performances. The
ame observation was reported by Guyon et al. [17]. Since the
odel based on SVM outperformed other classifiers, this type

f classifier was selected.
We identified VOCs implemented into the classification

odel with spectrum recognition using the NIST library in
ombination with spectrum interpretation by an experienced
ass-spectrometrist and identification based on retention times

f components. Table 2 shows the identified VOCs.
Fig. 5 shows the relative amount of the relevant compounds

vailable in the exhaled air. Bars left from the dotted line rep-
esent non-smoking subjects, bars to the right of the dotted line

epresent the smoking group; the height of the bar represents
he normalized integrated peak area of the selected component.
s can be seen from Fig. 5 the combined classification power of

hese four compounds is in most subjects based on availability in

rams. Boxplot representing (a) instrumental reproducibility match factors, (b)
actors and (d) inter-individual variability match factors. As demonstrated the
dual variability is larger (d) compared to the intra-individual variability (c).
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Table 2
Compounds used in the classification model to classify smokers and non-
smokers using VOCs in exhaled air

Compound name Retention time (min) No. of times detected
in 22 samples

2,5-Dimethyl hexane 7.98 11
Dodecanea 17.45 17
2
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,5-Dimethylfuran 7.46 8
-Methylfuran 4.16 7

a Confirmed by retention index.

moking subjects versus absence or levels below detection limit
f these compounds in exhaled air of non-smoking subjects. As
an be seen from Fig. 5 the individual classification power of
ach compound is not 100%. The SVM implementing and com-
ining data from all 4 compounds is however able to classify all
ubjects correctly.

. Discussion

VOCs in exhaled air are thought to represent several processes
n the human body, like metabolism and lipid peroxidation, and
herefore have a great potential as non-invasive biomarkers of
uman health, presence and possibly severity of disease. In this
aper a newly developed method for analyzing and data process-
ng of exhaled air samples has been presented and tested on a
mall validation set of exhaled air samples of 11 smoking and 11

on-smoking subjects. We are aware that the analysis of exhaled
ir and more specifically the analysis of VOCs from exhaled air
nd relating them with disease is not a new approach [3,7]. We
ant to emphasize that in the present study, a more robust method

n
s
i

ig. 5. Compound availability of identified discriminatory compounds used in an S
ides of the graphs depict the non-smoking subjects, the right sides depict the smo
d) 2-methylfuran.
atogr. B  861 (2008) 101–107

as developed for sampling and data mining of the acquired data
hen was published until now. One of the main advantages of
ur approach is that raw mass spectra are used to find com-
lementary compounds in all subjects, instead of combining
ompounds based on identity. The match factor as described
y Stein et al. [11] is implemented to determine the degree of
imilarity between measured mass spectra instead of compari-
on against library values. We experienced that first identifying
he compounds and then finding complementary compounds in
ll samples based on compound names, introduced more mis-
atches compared to matching based on the raw mass spectra.
e are confident that comparing the retention times and match

actors will result in more correctly combined compounds in the
espective subjects.

The selected subjects exhaled into a Tedlar bag and volatile
rganic compounds were trapped on desorption tubes and
nalyzed with use of a gas-chromatograph in line with a time-
f-flight mass spectrometer. The resulting data were processed
sing newly developed routines. To validate this analytical
ethod several reproducibility and variability measurements
ere performed to assess instrumental variability and both inter-

nd intra- individual variability. As demonstrated in Fig. 4
he instrumental variability (a) is very small which confirmed
he high reproducibility of our technology. As expected, inter-
ndividual variability is larger than intra-individual variability
nd both show greater variation than instrumental variability,
gain confirming the reliability of our methodology.
Other studies detecting VOCs in exhaled air mentioned the
ecessity to correct for chemical background appearing in their
amples. In our case, no background corrections have been taken
nto account. This is due to the fact that it will not be possible

VM model able to classify all smoking/non-smoking subjects correctly. Left
king subjects. (a) 2,5-Dimethylhexane, (b) dodecane, (c) 2,5-dimethylfuran,
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o correct for the complex interdependencies between excretion
nd uptake of VOCs by easily subtracting the inhaled from the
xhaled air [2]. Moreover, background noise will be randomly
istributed between subjects’ samples and would thus neither
xert any discriminatory power, nor interfere with the outcome
f the analyses. We are aiming with discriminative analysis only
o select those compounds that are specific for the disease or
ondition and should thus principally not depend on background
hemicals.

The data-analysis design was finally tested on a dataset con-
aining 1095 VOCs from 11 smoking and 11 non-smoking
ubjects. After classification analysis, a support vector classifier
ased on only 4 compounds – identified as 2,5-dimethylhexane,
odecane, 2,5-dimethylfuran and 2-methylfuran – was able to
orrectly classify all subjects based on 10-times cross valida-
ion. The authors are aware that simpler statistical approaches
ike T-statistics or discriminant analysis will perform similar in
small group size as the one used in this study. But since this
ethodology was designed to be used on large groups with hun-

reds of subjects a powerful approach like SVM was chosen. We
re aware of the fact that use of an SVM classifier to correctly
lassify 22 subjects is a bit overpowered, but here we merely
rovide a proof of principle.

The origin of the discriminating compounds in exhaled
ir remains unclear so far, although these compounds have
een identified previously in relation to smoking. In 2002
ordon et al. already demonstrated 2,5-dimethylfuran to be
promising breath biomarker in detection of active smoking

18] and Sanchez et al. in 2006 identified 2,5-dimethylfuran
nd 2-methylfuran as strong indicators of smoking status [14].
lthough it is well known that active cigarette smoking directly

ffects the levels of benzene and other VOCs in breath of smokers
nd previous research demonstrated that concentrations of ben-
ene detected in exhaled air of smokers are always higher than of
on-smokers [15,19], benzene and other important constituents
f cigarette smoke have not been included in our most opti-
ized model. The exclusion of for example benzene is because

his model represents the best subset of compounds that provides
he most optimal classification, also taken the redundancy of the
ompounds into account.
In conclusion, this study demonstrated the functionality
f our approach of exhaled air analysis by demonstrating
iscrimination based on smoking status of subjects. The pre-
ented methodology is very accurate and has great power. This

[

[

[

atogr. B  861 (2008) 101–107 107

esign regarding the analysis and identification of discrimina-
ory biomarkers in exhaled air might allow for non-invasive

onitoring of inflammation and oxidative stress in the res-
iratory tract in patients suffering from (inflammatory) lung
iseases.
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